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ABSTRACT

k
The theory of binary coherent sys tems is generalized f or

• multi—state cQmponents. The system st~te i~ defined to be the
state of the ‘~worst~~component ~~ the. UbestM mm path, or

• equivalently, the state of the best” component in the kworst
mm cut. All of the results for the binary case can be coin—
puted for multi—state systems using the binary structure and
reliability function concepts. Monotonicity results are now
valid with respect to stochastic ordering of component proba-
bility vectors.

Urn

0
1F~A  

... ‘
/ 

~Thi~~TIu LLA~ILII7 ~OIIE~
ML ~~ ~f ~~k~IAL

/

-a

I
_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . .



COHERENT SYSTEMS WITH MULTI—STATE COMPONENTS

by

R. H. Barlow

1. INTRODUCTION

The theory of binary coherent structures has served as a unifying

foundation for a mathematical theory of reliability [1). Various generali-

zations to multi—state coherent structures have been suggested ([2],[3],[4]).

However, these generalizations have not been fruitful except for very special

applications. We define a system state function for coherent systems with

multi—state components an~ investigate its properties. Many results for the

binary case have natural extensions in terms of this system state function.

These results also have applications in fault tt.~e analysis.

Suppose that we have a system with components C = {l,2, ..., n} . Fur—

therinore, suppose that each component can be in one of m + 1 states,

(0,1,2, ..., m} , where 0 is the failed state and in is the maximal or

“perfect” State. In addition, we have given sets of components called m m
• p

path sets {P1,P2, ... , P } where C = u . No mm path is properly
r=l

contained in any other mm path set. The components, C , together with the

m m  path sets define a coherent system. The system structure determines the

mm path sets. Intuitively, if all components In at least one mm path set

• are “functioning”, then the system is “functioning”. This is the set theo-

retic definition of a coherent system [cf. (5]]. The mm path sets determine

a blocking collection of sets called the mm cut sets (K1,K2, ... , K~ }
k

~~~~~ Each mm cut set meets each mm path set and C = U . Also, no mitt cut
s=1

set is properly contained In any other mm cut set. Intuitively, if all com-

ponents in at least one mm cut set are “not functioning”, then the system

is “not functioning”. Either the mitt path sets or the m m  cut sets uniquely 
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determine our coherent system.

Let z1 = j if component i is in state j (0 < j < in) so that

z = ~~~~~~ • • ~~~~~ 
Zn) is the component state vector. The specification and

determination of component states will in general depend on engineering and

system considerations which we will not discuss here. Let capital Z~ be

a random variable and let P(Z. = j) = p~ . > 0 where ~ p. = 1 . Since
3 j=O

could be 0 for some states, it is not necessary that every component

be capable of assuming every state. In general, component states will be

qualitative measures as are the concepts “failed” and “functioning”. In

much of what follows, it is not necessary to confine component states to

integer values (0,1,2, ..., m} . Z~ could, for example, take values in

[0,1] or even negative values. However, we do not pursue this generaliza-

tion here.

The performance level of a system, given the component state vector

z = ~~~~~~ •
~~~~

•
~~ 

z )  , will be system dependent and it is unlikely that any

one mathematical definltion of system performance will be preferred above all

others. Hence, we concentrate on a fundamental, but necessarily limited

measure of system performance. If the coherent system Is a series system,

then we assign to the system the state of its “worst” component; i.e. if c
• is the system state function, then ~(z) = Mm z~ . Intuitively, a series

l<i<n

system is no better than its worst component. If the coherent system is a

parallel system, then we assign to the system the state of its “best” com-

ponents; i.e. ç(z) = Max z~ . We will make use of the following well
1< i<n

known

1.1 Proposition:

For a coherent system with mm path sets {P1,P2, ... , P~) and mm

cut sets {K1,K2, ... , K.~
) and any real valued function f~

_ _ _ _ _
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Max Mm f~ = Mm Max f11<r~p 
~~~ 

l<s<k icK

[See [1], p. 12 and 15.]

1.1 Definition:

For a coherent system with mm path sets {P1,P2 , ..., P }  and mm cut

sets {K1,K2, ... , K.~} the s~gstem state function is

(1.1) ~(z) = Max Mm Z~~ = Mm Max z
1l<r~p icP l<s<k icK

Note that 1 (z) is coordinate—wise nondecreasing. Intuitively, t (z) is

the state of the “worst” component in the “best” mm path set or, equiva-

lently, the state of the “best” component in the “worst” mitt cut set.

• With this definition of system state, most of the results for binary

coherent systems have a natural generalization. For example, suppose that

is the first time that component i reaches state j starting in

state m , then the time until the system first reaches state j starting

in state in T
j 

, is easily seen to be

(1.2) = Max Mitt t = Mitt Max
l<r~p icP 1<s<k icK

5 ~

The result that redundancy at the component level is better than re-

dundancy at the system level, (Theorem 2.4, p. 8 [1]], also has a natural

generalization. Let z — (z1,z2, ..., z~) and w = (v1,w2 , ... , w )  be

component state vectors for components (1,2, ..., n} and (11,2
1
, ..., n1}

respectively. Components i and i1 may be identical but operate inde—

pendently of each other.

Def ine z V w — (z
1 V w1,z2 v w2, ..., z V w~)

~

-

~

—

~

- .• —- _______________



4

where z~ V w1 = max (zj,w~
) . Then

(1. 3) r~ (z V w) > ç (z) V 
~ 

(w)

This is an immediate consequence of the coordinatwise nondecreasing property

of ç . [Definition 1.1.]

I

F
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2. STOCHASTIC PROPERTIES OF THE SYSTEM STATE FUNCTION

Let

1 If component i is in state j
= 

~ 0 otherwise.

Clearly ~ x~~ = 1 . Let ~ be the usual coherent structure function as-

sociated with mitt path sets {P1,
P2, ..., P }  . Then t (X1 ,X2 ,  ..., x )  = 1

if and only if at least one mm path set has all of its components in state m

Also q ( X 1, X2 ,  .. ., x~~) = 0 if and only if at least one mm cut set has no

components in state in . Thus ~ is the coherent structure function which

recognizes only two states: the state m (or perfect state) and the nonper—

fect set of states less than m

Let y
~
. = 

~ 

and = (y1j,y2., ..., y~~) . Clearly 
~j ~~~~+l

coordinatewise, so that

~ (xi
) — 

~~~~ +~.
) > 0

Also ~(~~) = 1 if and only if there is at least one mitt path all of whose

components are in state j or greater. Hence r(z) > j if and only if

= 1 . It follows that

1 if c (z)=j
(2.1) q(~~) — 

~(Zj+1) = 0 otherwise.

This observation will be helpful for computing P(~ (Z) = j) since

P(? (Z) = j) = P (c~(Y~) — ~(Y~~1) = 1]
(2.2)

= E4 (Y~) — E4 (Y~~~1
)

In the following we assume that all components are statistically independent.
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We have proved the following

2.1 Theorem:

Let P(X.. = 1) = p~ . and q.. 
r~j 

‘ir For a coherent system with

structure function 4 and reliability function

h(~~) = E~ (X1 ,X2 ,  ... , x )

we have

P(C(Z) = j )  = h(~~) — h(~~~1
) 0 < j < in — 1

(2.3)

P(
~(~
) = in)  = h(~~)

(2.4) P(t~(Z) > j) = h(~~) 0 < j < in

where = (q1j,q21, ... , q~ .)

Example:

Consider the following two terminal network representation for a three

component coherent system. Assume components can be in any one of three

states: 0 for failed, 1 for marginal and 2 for perfect. The usual

FIGURE 2.1. Two Terminal Network.

reliability function is

h(22) p12(p 22 II p~~)

_ _____________ 44
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where p22 ~ 
p32 = p22 + p32 

— p22p32 . Let q11 
= 
~il 

+ P j2 and q12 
=

for i < i < 3  . Then

P(system is marginal) = P(ç = 1)

= h(11
) — h(j2)

= q
11
(q21 u q

3~
) — q12(q22 u q32

)

Notation:

It will be convenient to let p = (p
u
) be the probability matrix cor-

responding to component state matrix x = (x1~) . Let

(2.5) h~(2) = h(~ .) 
— h(~ .~ 1

) 0 < j < in — 1

and h (P) = h(~~)

be the probability that the coherent system is in state j and let h(p) =

(h1.~(p),h (p), ..., h (p)) . The usual monotonicity prr.~perties of binary co—
~ = 1 = m

herent systems have analogous mnonotonicity properties with respect to stochastic

ordering. Let ~ (cz0,ct1, • •
~~~~~ ~~ 

be a probability vector; i.e. 0 < < 1

and ~ a
j
= l .

j=0

Definition:

*
ci a iff

St

in m 
*

~ 
ci
r 

for 0 < j < in ;
r—j ~ r—j

i.e. ~ is etochaBtically Z~ess than
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Definition:

*
• 

. p <  p iff
• St

1 * * *(Pi~
,p
~v ~

‘im~ ~ ~Y’i0’~ il’ ~
‘im

St

for i < j < n . Intuitively, the better the components, the better the

system state. More precisely, we have

2.2 Proposition:

*If p < p , then
St

(2.6) ii(~
) 

~
.

Proof:

To show ~ h (p) < ~ h (~~) 
we need only verify that h(~ ) ,

~~
. h(i*)

r=j — r=j —

* 
m m 

* *by Theorem 2.1 (2.4). Since p < p implies 
~~~~~~ 

= 
~~~ -~~ 

~~~. ~ir 
= qjj

St — r=j r j

and h is coordinatewise nondecreasing, the result is obvious. I

Generalization of the Moore—Shannon Theorem

Moore and Shannon showed that binary coherent reliability functions are

S—shaped in the sense that if all components work with probability p , either

h(p) > p or h(p) < p for all p , or there exists p0 such that h(p) < p

for p p
0 while h(p) > p for p > p0 . [Cf. Theorem 5.4 [1].] This re—

suit, comparing an arbitrary binary coherent system reliability with a single

L 

component reliability , has a natural generalization with respect to stochastic

ordering.

-_-~ -~
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2.3 Proposition:

Let (p~~~,p .1, ..., p~~) = (cz0,cz1, .. ., c i )  = a . Assume h(p
0
) = p

0

(0 < p
0 

< 1) is the fixed point for the corresponding binary coherent re—

*liability funct ion.  Let a = (1 — p0,O, ..., O,p0) . Then

(a) a < a* implies h(a) < a , while
St 

— 
St

(b) a > implies h(s) > a
St St

where ~ is the probability matrix with identical rows, cm

Proof:

To show (a) we need only verify

hr
(s) 

~ ~~ 

h
~.(~~)

But ~ h (cz) = h(~~) = h( ~ and ~ ci ci = p
0 

for 1 < j < in
r j  r=j r=j r j

m
by assumption. By the Moore—Shannon Theorem , hf ~ a < 

~ 
ci
r 

for
\r=j r, r j

0 < j < m which in turn implies h(~) < a
St

• (b) is proved similarly.

Proposition 2.3 allows us to compare arbitrary coherent systems (with

identical components) to a one component system with the same probability

vector. Of course, if no p
0(0 

< p0 
< 1) such that h(p

0
) p0 exists,

then either h(cz) < a or h(s) > a for all a .
St St

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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A Geometric Property of the System State Distribution

A fundamental result in coherent structure theory is that the distribu-

tion of time to first system failure is IFRA (for increasing failure rate

average) if component life distributions have the same property. The same

kind of result carries over to the system state distribution.

• Suppose states {j,j + 1, ... , in) are the “good” states and the distri-

bution of time for a component to leave the good states starting in state in

is IFRA ; i.e. (P[Z~ (t) > fl}
l/t 

is nonincreasing in t > 0 for fixed j

Then

{P[~ (t) 
J]}l/t

is also nonincreasing in t > 0 for fixed j . This is the so—called IFRA

closure theorem [Cf. Theorem 2.6, (lii]. The following is a corollary to the

• IFRA closure theorem.

2.4 Proposition:

If (P[Zi(t) > is nonincreasing in j > 0 for fixed t , then

{Pfc(t) >

is also nonincreasing in j > 0 for fixed t

Proof:

P(~ (t) > ii = h[~~ (t)] where

q1~
(t) = P[Z

1(t) 
> j]

Define 
~~~~ r~ j 

I~ir~
t) and elsewhere by constructing the linear inter-

polate to the points (j,—iog p
1
(j)) j — 0,1, ... , m . Then [~ 1

(x)]~~’iC

• is non increasing in x > 0 . By the IFRA closure theorem 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ • -• •~~ -- - •
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, F~ (j) ] }~’~

= (h[q
1~ (t),q2~ (t), ... , q~~ (t)]~~~

is nonincreasing in j  > 0 . I

Measures of Component Importance

Various measures of component importance have been suggested for com-

ponents in a binary coherent system [6], [7]. These have a natural general-

ization to multi—state systems. For example, we say that component i is

“critical” to a coherent system at state j , if, with component i in state

j the system is in state j and with component i not in state j , the

system is not in state j . Let I
~~(p) be the probability of this event.

We call I~~(~) the probability importance of component i with respect to

• system state j

To compute Ijj(P) let

(l
~~~z~

) = 

~ mo ’~j l’ ~~
“‘ Yj,j_l~

l
~
Yi,j+i~ ‘“‘

Then

• ~~~~~~~~ 
— 

~~
Oij~Zj+1

) = 1

if and only if component i is critical to system states (j,j+l , ..., in)

in the sense that if component i is in state j , then the system is in

• one of the states {j,j + 1, ..., in) and if component i is not in state

j , the system is not in one of the states (j ,J + 1, ... , m} . Hence com-

ponent i is critical to system j if and only if

— •(O~~~;
)l — 1

~~
’i j+l’~~+l1 

— 

~~°i,j+i’Zj+i
)] — 1

for j — 1,2, ..., in — 1 . Hence

- - • — ---~~~~~— •-•-
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I~~(~ ) = E[
~

(l
ij~Ij

) — 

~~
0ij’!~j

)] — E[4(li j+1~Ij+1
) —

(2 .7)
• — (h(l

ij~aj
) — h(O~~,q~ ) ]  — [h(l i j+1~~j+1

) — h( O
i~~÷1~.~~+1)]

for j  = 1,2, ... , in — 1 . It is easy to verify that

= E[4
~
(li ,Y )  —

and

= E[q,(l~1,Y1) —

Note that for the case m 1 , I~~(p) =

Finally, the probability that component J. is in state j and component

i is critical for system state j is p .~ I~~(p)

First Passage Distribution to State j

We now assume tha - components can “degrade” through successively lower

states until, fim1ally, total failure coincides with passage to state 0 ; i.e.

m -~ m — l - ~~... 2 - ’ l ’O .

If state transition times are independent and exponentially distributed, this

is called a “pure death process” . In this section we do not allow transitions

to higher states. Let F
ij be the (continuous) distribution of time until

component I first reaches state j , starting in state in and F
1~
(t) =

1 — F
ij(t) . Let t (t) be the state of the system at time t , then

• P {~~(s) > j;0 < s < t} = hLF1~(t)~F2~(t). ... ,

by (2.4) of Theorem 2.1.

• We can also compute the probability that component i causes the system

__
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to enter state j  , in the sense that the system state changes from state

j  + 1 to state j  simultaneously with a similar state transition by corn—

ponent 1. . If component first  passage distributions to state j  are con-

tinuous, as we assume, then at most one component can be responsible for the

system changing state.

2.5 Proposition:

If first passage distributions of time to go from state in to state j

(0 < j < in — 1) , Fi. (t) , are continuous, then the probability that component

I causes the system to pass to state j by time t is

f{[h(li~
,P
1
(u)) - h(o

1~~~~
(u))]

• 0

— [h(l
i,~+1~!j+1

(u))  — h(oj j÷1~!j+1
(u))]}dF

ij(u)

where !j (u) — (
~lj

(u)
~~2j

(t1)
~ 

...~~ ~~~~u))

Proof:

By (2.7)

(h( 11~ i~~~(u))  — h(o~~~P~ (u))]

— ~~~~~~~~~~~~~~~~~~ — h(o1~~~ 1~I1~ 1(u ) ) ]

is the probability that component i is critical to system state j  + 1

at time u in the sense that if componen t i is in state j  + 1 at time

u , the system is in state j  + 1 at time u . Otherwise the system is not

in state j  + 1 at time u • If we multiply this by the probability ,

dF1~ (u) , that component I enters state j  in the interval (u ,u + du)



~‘1

14

and integrate we have the required probability. Note that if component i

is In state j + 1 and critical to system state j + 1 at time u , then

it is a “worst” component in a “best” mm path. Hence if component i then

leaves state j + 1 for state j , so does the system since component I

was critical. II

_  _ _  --•~~~~~~~~~~~ - — - - - • ~~~~~~~ - - • _
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